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This paper considers a class of cyber-attacks attacking a swarm of Unmanned Aerial Vehicles
(UAVs). Our focus is on scenarios wherein an attacker may hack into a subset of vehicles in
the swarm and create subtle changes in their parameters. These hacked vehicles (referred
to as malicious vehicles) are subsequently able to modify the behavior of the overall swarm.
The swarm comprising the mix of malicious and normal vehicles is modeled using a system of
coupled Partial Differential Equations (PDEs) in a two-dimensional LWR model. We develop a
methodology that combines Gaussian Processes (GP) with this two-species 2D PDE model, and
use this method for detecting the presence of such malicious vehicles in the swarm. A Bayesian
Optimization scheme is employed to determine the optimal choice of basis and kernel functions
that constitute the GP. Simulation results demonstrate that this detection architecture performs
successful detection of the malicious vehicles, and also their mode of attack on the traffic.

I. INTRODUCTION
The study of potential cyber-attacks in different domains is an active area of research. Given that systems are

becoming more interconnected, cyber physical systems that operate infrastructure and/or plants can make these assets
more vulnerable and open to different attack vectors. Any failure will impact safety, with associated financial and
societal ramifications. Many scenarios wherein cyber-attacks can occur are reported in the literature. These include,
for example, smart grid attacks [1], attacks on gas transmission and distribution networks [2], large-scale process
engineering plants [3], water networks, Unmanned Aerial Vehicles [4], and automobiles [5]. The detection of such
attacks is an area of considerable research interest [6–9].

In this paper, our focus is on detecting cyber-attacks performed in swarms of UAVs. The class of cyber-attacks
considered are those wherein an attacker hacks into the guidance and control program of a carefully chosen subset of
vehicles within a UAV swarm, and converts them into vehicles with malicious intent. These malicious vehicles then
perform a series of subtle changes in the way they interact with the other vehicles in the swarm, with the eventual
objective to degrade the mission effectiveness of the swarm. We model the swarm by using partial differential equations
(PDEs).

The use of PDEs to model multi-vehicle systems has a fairly long history, with the earliest origins being the
Lighthill-Whitham Richards (LWR) model [10], which was used to model automotive traffic flows on highways. The
LWR model is a first order equation governing the spatio-temporal evolution of density of vehicles, and represents the
conservation of cars on a highway. It also has applicability in two-dimensional multi-vehicle systems including swarms
of UAVs.

A preliminary method which used gas-kinetic based PDEs to model such attacks was presented in [11]. In [12], the
authors employed a two-species one-dimensional LWR model for automotive traffic on a highway. The two species
are normal and malicious vehicles, and the malicious vehicles (arbitrarily distributed among the normal vehicles)
may perform subtle speed and/or lane changes, with an objective to force the traffic to either slow down, or speed
up, and thereby attain an equilibrium velocity-density relationship which is different from that desired by the normal
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Fig. 1 UAV swarm comprising of normal (blue) and malicious (red) UAVs

vehicles. This paper advances the work of our previous paper [12] in the following ways: (a) Our framework now
considers cyber-attacks occurring in a UAV swarm operating in a 2-D environment at constant altitude, by considering
a two-species model involving normal and malicious vehicles, wherein the malicious vehicles seek to disrupt the
equilibrium velocity-density profile of the normal vehicles. (b) A linearized analysis of the propagation of perturbations
in the malicious and normal vehicles is performed and this helps to determine the direction of travel of the maximal
percentage of malicious vehicles. (c) The two-species 2D LWR model is then integrated with a Gaussian Process (GP)
framework, which is used to perform detection of the malicious vehicles in the swarm. This detection framework utilizes
readings from multiple stationary sensors overseeing the swarm, that are used to train the GPR model. The trained GPR
model is then used by a mobile sensor (which may be another UAV flying over the swarm at a higher altitude) moving in
the direction of the wave of malicious vehicles (as predicted by the linearized analysis) to estimate the percentage of
malicious vehicles in the swarm.

The rest of the paper is organised as follows. Section II defines the problem statement. In Section III, a brief
description of the 2D LWR model for the single-species and two-species cases, respectively, are presented. An analysis
of the linearized PDE models is performed in Section IV. In Section V, the overall solution architecture for attack
detection is presented. A description of the Gaussian Process Regression (GPR) model and its implementation is given
in Section VI. The efficacy of the methodology is demonstrated by simulations in Section VII.

II. MOTIVATION AND PROBLEM STATEMENT
Consider a swarm of UAVs flying at a constant altitude as shown in Fig 1. The swarm comprises a mix of normal

vehicles (depicted in blue) and malicious vehicles (depicted in red). The malicious vehicles intend to modify the overall
flow of vehicles in the swarm. During such an attack, it can be important to determine the location and density of the
malicious vehicles in the swarm.

Let 𝜌(𝑥, 𝑦, 𝑡) represent the average density of vehicles (in terms of vehicles per unit area) and 𝑈 (𝑥, 𝑦, 𝑡), 𝑉 (𝑥, 𝑦, 𝑡)
represent the average velocities of the vehicles along the 𝑥 and 𝑦 directions, respectively. Let 𝑥 ∈ [0, 𝐿𝑥] and 𝑦 ∈ [0, 𝐿𝑦],
where 𝐿𝑥 , 𝐿𝑦 represent the dimensions of the 2D rectangular domain. Let 𝜌𝑀 (𝑥, 𝑦, 𝑡) represent the density of malicious
vehicles and 𝜌𝑁 (𝑥, 𝑦, 𝑡) represent that of normal vehicles, such that 𝜌𝑀 + 𝜌𝑁 = 𝜌. Let 𝑝 represent a parameter
influencing the velocities 𝑈 and 𝑉 - it governs the attack mode of the malicious vehicles. Assume there is a single
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Fig. 2 Fundamental diagram between density and velocity for normal and malicious vehicles: (a) 𝑉 vs.𝜌𝑁 , (b) 𝑉
vs. 𝜌𝑀 (𝑝 > 1), (c) 𝑉 vs. 𝜌𝑀 (𝑝 < 1)

(a) (b)

Fig. 3 Fundamental diagram for varying 𝜌𝑁 and 𝜌𝑀 a) 𝑝 > 1 b) 𝑝 < 1

mobile sensor which has the ability to measure the values of 𝜌, 𝑈, 𝑉 , along its trajectory in the spatial (𝑥, 𝑦) domain.
The objective is to determine a suitable trajectory of the UAV, in conjunction with a methodology by which it can use
the measurements along its trajectory to determine the percentage of malicious vehicles 𝜌𝑀% ≡ 𝜌𝑀/𝜌 × 100 and 𝑝.

III. PDE SWARM MODEL
The 1D single-species LWR model [10] has been extensively used in the literature due to its simplicity [13–15].

In [12], a 1D two-species LWR model was introduced, wherein the malicious species (M) interacts with the normal
species (N) and influences the velocity of the normal vehicles based on their mode of attack as well as their own relative
density. In the subsequent sections, we first present the 2𝐷 LWR model for the 2𝐷 UAV swarm comprising of normal
vehicles alone, and we then extend our 1𝐷 two-species traffic model to a 2𝐷 two-species UAV swarm model.

A. 2D LWR Single-Species Model
Extending the 1𝐷 LWR traffic model to two-dimensions, the flow of vehicles in the swarm is modeled in terms of its

average density 𝜌(𝑥, 𝑦, 𝑡) (in vehicles/km2) and average vehicle velocities 𝑈 (𝑥, 𝑦, 𝑡) and 𝑉 (𝑥, 𝑦, 𝑡) along the 𝑥 and 𝑦

axes, respectively, as follows:

𝜕𝜌

𝜕𝑡
+ 𝜕 (𝜌𝑈)

𝜕𝑥
+ 𝜕 (𝜌𝑉)

𝜕𝑦
= 0 (1)

3

D
ow

nl
oa

de
d 

by
 I

sa
ac

 W
ei

nt
ra

ub
 o

n 
A

pr
il 

17
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
05

29
 



Here, 𝑈 (𝑥, 𝑦, 𝑡) and 𝑉 (𝑥, 𝑦, 𝑡) are defined as:

𝑈 (𝑥, 𝑦, 𝑡) = 𝑈𝑚𝑎𝑥

(
1 − 𝜌(𝑥, 𝑦, 𝑡)

𝜌𝑚𝑎𝑥

)
𝑉 (𝑥, 𝑦, 𝑡) = 𝑉𝑚𝑎𝑥

(
1 − 𝜌(𝑥, 𝑦, 𝑡)

𝜌𝑚𝑎𝑥

) (2)

where, 𝜌𝑚𝑎𝑥 ,𝑈𝑚𝑎𝑥 and 𝑉𝑚𝑎𝑥 are the maximum density and maximum velocities in the 𝑥 and 𝑦 directions respectively.
Fig 2(a) shows the above relationship between density and velocity along the 𝑦-axes direction. A similar relationship
exists between density and velocity in the 𝑥 direction. Thus it is assumed that the normal vehicles desire to maintain a
linear velocity-density relationship, such that their speed decreases linearly with increasing density of vehicles in the
swarm.

B. 2D LWR Two-Species Model
The 2𝐷 LWR model for the two-species system is as follows:

𝜕𝜌𝑁

𝜕𝑡
+ 𝜕 (𝜌𝑁𝑈)

𝜕𝑥
+ 𝜕 (𝜌𝑁𝑉)

𝜕𝑦
= 0

𝜕𝜌𝑀

𝜕𝑡
+ 𝜕 (𝜌𝑀𝑈)

𝜕𝑥
+ 𝜕 (𝜌𝑀𝑉)

𝜕𝑦
= 0

(3)

where, 𝜌𝑁 (𝑥, 𝑦, 𝑡) and 𝜌𝑀 (𝑥, 𝑦, 𝑡) represent the average densities of the normal and malicious vehicles, respectively, in
the swarm.

Along lines similar to the 1𝐷 LWR two-species LWR model given in [12], it is assumed that the malicious species
of vehicles seek to alter the linear velocity-density relationship shown in Fig 2(a). Depending on their mode of attack,
the malicious vehicles may either speed up the vehicles in the swarm (as demonstrated in Fig 2(b), or slow them down
(as demonstrated in Fig 2(c)). When all vehicles are malicious, they adopt a velocity-density relationship as shown in
Figs 2(b),(c). When a subset of the vehicles in the swarm are malicious, then the quantities 𝑈 (𝑥, 𝑦, 𝑡) and 𝑉 (𝑥, 𝑦, 𝑡)
have the following representation:

𝑈 (𝑥, 𝑦, 𝑡) = 𝑈𝑚𝑎𝑥

(
1 −

(
𝜌𝑁 (𝑥, 𝑦, 𝑡) + 𝜌𝑀 (𝑥, 𝑦, 𝑡)

𝜌𝑚𝑎𝑥

) 𝑝 (𝑥,𝑦,𝑡 ) )
𝑉 (𝑥, 𝑦, 𝑡) = 𝑉𝑚𝑎𝑥

(
1 −

(
𝜌𝑁 (𝑥, 𝑦, 𝑡) + 𝜌𝑀 (𝑥, 𝑦, 𝑡)

𝜌𝑚𝑎𝑥

) 𝑝 (𝑥,𝑦,𝑡 ) ) (4)

where 𝜌𝑁 (𝑥, 𝑦, 𝑡), 𝜌𝑀 (𝑥, 𝑦, 𝑡) represent the average densities of the normal and malicious vehicles respectively. The
quantity 𝑝(𝑥, 𝑦, 𝑡) is given by 𝑝(𝑥, 𝑦, 𝑡) = 1 + 𝑘 (𝜌𝑀 (𝑥, 𝑦, 𝑡)/(𝜌𝑀 (𝑥, 𝑦, 𝑡) + 𝜌𝑁 (𝑥, 𝑦, 𝑡))) where 𝑘 can be either positive
or negative. When there are no malicious vehicles (that is, 𝜌𝑀 = 0), then 𝑝 = 1 and the two-species case reduces to the
single-species case where all vehicles are normal.

Fig. 3(a),(b) shows the equilibrium velocity 𝑉𝑒 as a function of (𝜌𝑁 , 𝜌𝑀 ) for 𝑝 > 1 and 𝑝 < 1, respectively. When
𝑝 > 1 (Fig 3(a)), as 𝜌𝑀% increases, the equilibrium velocity becomes higher compared to a single species case with the
same total density. On the other hand, when 𝑝 < 1 (Fig 3(b)), then as 𝜌𝑀% increases, the equilibrium velocity is lower
for the two-species case compared to the single-species case for the same total density.

C. Comparison of spatio-temporal evolution of density in the Single and Two-species Models
In order to understand the behaviour of the single- and two-species 2𝐷 LWR models, a 10 km × 10 km area is

chosen as the domain. On this domain, an initial distribution of normal vehicles shown in Fig 4(a), is considered. Here,
all the vehicles are at an equillibrium density of 50 vehicle/km2, with a small perturbation of normal vehicles in the
middle of the domain (𝑥 ∈ [4, 7] 𝑘𝑚, 𝑦 ∈ [4, 7] 𝑘𝑚). The LWR single species equation (Eq 1) is then used to simulate
the flow of vehicles on this area and the density distribution at 129.6 s is shown in Fig. 5. In this scenario 𝑝 = 1 and
velocity and density follow a linear relationship.

Next, a two-species scenario is considered where 5% of the normal vehicles in the perturbation of the initial
single-species density distribution are replaced by malicious vehicles such that the total density distribution is identical to
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(a)

(b)

Fig. 4 Initial density distributions for (a) Single species (b) Two species

(a) (b)

(c)

Fig. 5 Density distributions at 108 s (a) Single species (p = 1) (b) Two species (𝑝 < 1) (c) Two species case (𝑝 > 1)
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that used for the single-species simulation. Fig. 4(b) shows this initial density distribution for the normal and malicious
vehicles. The LWR two-species equation (Eq 3) is then used to simulate the swarm for this scenario with the parameter
𝑝 < 1. Fig 5 (b) shows the density distribution at 129.6 s. Comparing the density distribution plots for both cases, it can
be seen that though both perturbations propagate towards the (10, 10) corner, the perturbation for the single-species
case more or less retains the uniform shape at the initial conditions while that for the two-species case is uneven, with a
higher density of vehicles at the back. Increased percentage of malicious vehicles can cause a higher density change at
the back and also cause shocks impeding the flow of vehicles.

Next, changing the value of 𝑝 so the scenario corresponds to 𝑝 > 1 for the two-species case and again simulating
the flow of vehicles, we get the density distribution at 129.6 s as shown in Fig 5(c). Again it can be seen that the
density distribution for this case is quite different compared to the single-species case with 𝑝 = 1. It is evident that the
perturbation has propagated faster to the (10, 10) corner, when compared to the single-species case.

IV. Determining Propagation of Perturbations in the Two-Species PDE Model using a
Linearized Analysis

In this section, we perform a linearized analysis of the PDE model given in (3)-(4), and perform a wave evolution
analysis. Assume a density distribution of vehicles as shown in Fig. 4 with equilibrium density of normal vehicles 𝜌𝑁𝑒

and initial perturbations in the malicious and normal vehicles of Δ𝜌𝑀0 and Δ𝜌𝑁0, respectively, with these perturbations
occurring at 𝑥 ∈ [𝑥10, 𝑥20], 𝑦 ∈ [𝑦10, 𝑦20]. The linearized PDEs are as follows:

𝜕Δ𝜌𝑁

𝜕𝑡
+

[(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑈𝑚𝑎𝑥

]
𝜕Δ𝜌𝑁

𝜕𝑥
+

[(
− 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑈𝑚𝑎𝑥

(
1 + 𝑘 log

(
𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

))]
𝜕Δ𝜌𝑀

𝜕𝑥

+
[(

1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑉𝑚𝑎𝑥

]
𝜕Δ𝜌𝑁

𝜕𝑦
+

[(
− 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑉𝑚𝑎𝑥

(
1 + 𝑘 log

(
𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

))]
𝜕Δ𝜌𝑀

𝜕𝑦
= 0

(5)

𝜕Δ𝜌𝑀

𝜕𝑡
+

[(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑈𝑚𝑎𝑥

]
𝜕Δ𝜌𝑀

𝜕𝑥
+

[(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑉𝑚𝑎𝑥

]
𝜕Δ𝜌𝑀

𝜕𝑦
= 0 (6)

Writing (Eq )5) and (6) as a system of equations in matrix form, we have;
𝜕Δ𝜌𝑁

𝜕𝑡
𝜕Δ𝜌𝑀

𝜕𝑡

 + Mx


𝜕Δ𝜌𝑁

𝜕𝑥
𝜕Δ𝜌𝑀

𝜕𝑥

 + My


𝜕Δ𝜌𝑁

𝜕𝑦

𝜕Δ𝜌𝑀

𝜕𝑦

 = 0


𝜕Δ𝜌𝑁

𝜕𝑡
𝜕Δ𝜌𝑀

𝜕𝑡

 +

(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑈𝑚𝑎𝑥

(
− 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑈𝑚𝑎𝑥

(
1 + 𝑘 log

(
𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

))
0

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑈𝑚𝑎𝑥



𝜕Δ𝜌𝑁

𝜕𝑥
𝜕Δ𝜌𝑀

𝜕𝑥


+


(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑉𝑚𝑎𝑥

(
− 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑉𝑚𝑎𝑥

(
1 + 𝑘 log

(
𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

))
0

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑉𝑚𝑎𝑥



𝜕Δ𝜌𝑁

𝜕𝑦

𝜕Δ𝜌𝑀

𝜕𝑦

 = 0

(7)

The initial conditions for the perturbations are given by[
Δ𝜌𝑁 (𝑥, 0)
Δ𝜌𝑀 (𝑥, 0)

]
=


[
Δ𝜌𝑁0

Δ𝜌𝑀0

]
, 𝑥10 ≤ 𝑥 ≤ 𝑥20, 𝑦10 ≤ 𝑦 ≤ 𝑦20

0, elsewhere
(8)

To solve the above system of PDEs, the equations need to be transformed into a diagonal form. Hence, the matrices
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Mx, My are diagonalized as Mx = SJxS−1 and My = SJyS−1 respectively, where

Jx =


(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑈𝑚𝑎𝑥 0

0
(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑈𝑚𝑎𝑥

 , Jy =


(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑉𝑚𝑎𝑥 0

0
(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑉𝑚𝑎𝑥


S =


1 −1 − 𝑘 log

(
𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
0 1

 , S−1 =


1 1 + 𝑘 log

(
𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
0 1


(9)

Transforming the variables 𝚫𝝆 =

[
Δ𝜌𝑁 Δ𝜌𝑀

]𝑇
, as

∼

𝚫𝝆 = 𝑺−1𝚫𝝆, we get

∼

𝚫𝝆 =

[
𝑢

𝑣

]
=


1 1 + 𝑘 log

(
𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
0 1


[
Δ𝜌𝑁

Δ𝜌𝑀

]

=


Δ𝜌𝑁 +

[
1 + 𝑘 log

(
𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)]
Δ𝜌𝑀

Δ𝜌𝑀


(10)

Thus, the PDEs governing the transformed variables are given by
𝜕𝑢

𝜕𝑡
𝜕𝑣

𝜕𝑡

 +

(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑈𝑚𝑎𝑥 0

0
(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑈𝑚𝑎𝑥



𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑥


+


(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑉𝑚𝑎𝑥 0

0
(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑉𝑚𝑎𝑥



𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

 = 0

(11)

The initial conditions for the transformed variables are given by

[
𝑢0

𝑣0

]
=



Δ𝜌𝑁0 +

[
1 + 𝑘 log

(
𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)]
Δ𝜌𝑀0

Δ𝜌𝑀0

 , 𝑥10 ≤ 𝑥 ≤ 𝑥20, 𝑦10 ≤ 𝑦 ≤ 𝑦20

0, elsewhere

(12)

Solving the above system of PDEs (11), (12) using the method of characteristics, the equations governing the transformed
variables are given by:

𝑢(𝑥, 𝑡) =


𝑢0, 𝑥10 +𝑈𝑚𝑎𝑥

(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
≤ 𝑥 ≤ 𝑥20 +𝑈𝑚𝑎𝑥

(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
,

𝑦10 +𝑉𝑚𝑎𝑥

(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
≤ 𝑦 ≤ 𝑦20 +𝑉𝑚𝑎𝑥

(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
0, elsewhere

𝑣(𝑥, 𝑡) =


𝑣0, 𝑥10 +𝑈𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
≤ 𝑥 ≤ 𝑥20 +𝑈𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
,

𝑦10 +𝑉𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
≤ 𝑦 ≤ 𝑦20 +𝑉𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
0, elsewhere

(13)

Finally, the equations governing the propagation of the perturbations Δ𝜌𝑁 (𝑥, 𝑡) and Δ𝜌𝑀 (𝑥, 𝑡) are given by the
following transformation 𝚫𝝆 = 𝑺

∼

𝚫𝝆.
Δ𝜌𝑁 (𝑥, 𝑡) = 𝐴 + 𝐵 (14)
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where

𝐴 =


Δ𝜌𝑁0 + 𝑤Δ𝜌𝑀0, 𝑥10 +𝑈𝑚𝑎𝑥

(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑡 ≤ 𝑥 ≤ 𝑥20 +𝑈𝑚𝑎𝑥

(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑡,

𝑦10 +𝑉𝑚𝑎𝑥

(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑡 ≤ 𝑦 ≤ 𝑦20 +𝑉𝑚𝑎𝑥

(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑡

0, elsewhere

𝐵 =


−𝑤Δ𝜌𝑀0, 𝑥10 +𝑈𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑡 ≤ 𝑥 ≤ 𝑥20 +𝑈𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑡,

𝑦10 +𝑉𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑡 ≤ 𝑦 ≤ 𝑥20 +𝑉𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑡

0, elsewhere

𝑤 =

[
1 + 𝑘 log

(
𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)]
Thus, the perturbation Δ𝜌𝑁 is composed of two parts 𝐴 and 𝐵: 𝐴 has positive amplitude and propagates with velocity

components 𝑈𝑚𝑎𝑥

(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
along the 𝑥 direction and 𝑉𝑚𝑎𝑥

(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
along the 𝑦 direction. 𝐵 has negative

amplitude and propagates with velocity components 𝑈𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
in 𝑥 direction and 𝑉𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
in 𝑦

direction respectively.

Δ𝜌𝑀 (𝑥, 𝑡) =


Δ𝜌𝑀0, 𝑥10 +𝑈𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑡 ≤ 𝑥 ≤ 𝑥20 +𝑈𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑡,

𝑦10 +𝑉𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑡 ≤ 𝑥 ≤ 𝑦20 +𝑉𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
𝑡

0, elsewhere

(15)

Thus, the perturbation Δ𝜌𝑀 has positive amplitude and propagates with velocity component 𝑈𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
along

the 𝑥 direction and velocity component 𝑉𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
along the 𝑦 direction, the same wave velocity as Part B of

Δ𝜌𝑁 . Also in both perturbations, the wave velocities are functions of the equilibrium density 𝜌𝑁𝑒 and swarm properties
𝑈𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥 , 𝜌𝑚𝑎𝑥 and the attack parameter 𝑘 only influences the amplitude of the perturbations in normal vehicles
alone.

Interpretation of Solutions
In order to physically interpret these results, let us consider the following two 1𝐷 traffic cases, where there is an

initial equilibrium distribution of normal vehicles and a small perturbation comprising of malicious and normal vehicles
as shown in Fig 6 and Fig 7. In the first case, the equilibrium density is less than the critical density 𝜌𝑐𝑟𝑖𝑡 = 0.5𝜌𝑚𝑎𝑥 ,
where 𝜌𝑚𝑎𝑥 is taken as 140 vehicles/km2. Fig 8 shows the propagation of the perturbations in 𝜌 = 𝜌𝑁 + 𝜌𝑀 , 𝜌𝑁 and
𝜌𝑀 in space and time. The corresponding figures on the right hand side show the respective top views. It can be seen
that in the plot for 𝜌𝑁 , the perturbation Δ𝜌𝑁 is composed of two parts. Part A is a positive perturbation which moves

with the wave velocity 𝑈𝑚𝑎𝑥

(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
in the 𝑥 direction while Part B is a negative perturbation which moves with

the wave velocity 𝑈𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
in the 𝑥 direction. Also both wave velocities are positive and the perturbation move

towards the 𝑥 = 10𝑘𝑚 side. In the plot for 𝜌𝑀 , it is seen that the perturbation Δ𝜌𝑀 is a positive perturbation which

which moves with the wave velocity 𝑈𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
in the 𝑥 direction. Since the wave velocity for Δ𝜌𝑀 is the same

as for Part B, it also moves towards the 𝑥 = 10𝑘𝑚 side.
In the second case, the equilibrium density is greater than the critical density 𝜌𝑐𝑟𝑖𝑡 = 0.5𝜌𝑚𝑎𝑥 . Fig 9 shows the

propagation of the perturbations in 𝜌 = 𝜌𝑁 + 𝜌𝑀 , 𝜌𝑁 and 𝜌𝑀 in space and time. The corresponding figures on the right
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Fig. 6 Initial (𝜌, 𝜌𝑁 , 𝜌𝑀 ) distribution for the linearized analysis (Case 1)
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Fig. 7 Initial density (𝜌, 𝜌𝑁 , 𝜌𝑀 ) distribution for the linearized analysis (Case 2)
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Fig. 8 Propagation of the perturbations in density (𝜌, 𝜌𝑁 , 𝜌𝑀 ) for Case 1. Figures in the right column show
the top view of the figures in the left column to illustrate the propagation of perturbations
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Fig. 9 Propagation of the perturbations in density (𝜌, 𝜌𝑁 , 𝜌𝑀 ) for Case 2. Figures in the right column show
the top view of the figures in the left column to illustrate the propagation of perturbations
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Fig. 10 Flowchart of the Algorithm

hand side show the respective top views. Similar to Case 1, the perturbation Δ𝜌𝑁 is composed of two parts. Part A is a

positive perturbation which moves with the wave velocity𝑈𝑚𝑎𝑥

(
1 − 2𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
in the 𝑥 direction while Part B is a negative

perturbation which moves with the wave velocity 𝑈𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
in the 𝑥 direction. However since 𝜌𝑁𝑒 > 𝜌𝑐𝑟𝑖𝑡 ,

wave velocity of Part A is negative and hence it move towards the 𝑥 = 0𝑘𝑚 side while Part 𝐵 of the perturbation has
positive wave velocity and move towards the 𝑥 = 10𝑘𝑚 side. In the plot for 𝜌𝑀 , it is seen that the perturbation Δ𝜌𝑀 is a

positive perturbation which which moves with the wave velocity 𝑈𝑚𝑎𝑥

(
1 − 𝜌𝑁𝑒

𝜌𝑚𝑎𝑥

)
in the 𝑥 direction which is positive

similar to Case 1. Thus, the wave velocity for the propagation of malicious vehicles is always positive and its magnitude
is a function of the equilibrium density. Also, the amplitude of the perturbation remains the same with time. This
analysis demonstrates that if a mobile sensor travels with a velocity equal to the wave velocity of Δ𝜌𝑀 for the initial
point of the perturbation detection, it can detect and track the maximum percentage of malicious vehicles in the swarm.

V. SOLUTION ARCHITECTURE
We now discuss an architecture to detect the percentage density of the malicious vehicles (𝜌𝑀%) as well as the

attack mode 𝑝. The architecture is shown in Fig 10. Let 𝜌𝑆𝑆 and 𝜌𝑇𝑆 represent the total densities for a single-species
baseline case and two-species case respectively, and 𝑈𝑆𝑆 , 𝑈𝑇𝑆 , 𝑉𝑆𝑆 , 𝑉𝑇𝑆 be correspondingly defined. Define quantities
𝑐𝜌 (𝑡), 𝑐𝑈 and 𝑐𝑉 (𝑡), where

𝑐𝜌 (𝑡) ≡ 𝜌𝑇𝑆 (𝑥𝑖 , 𝑦̄𝑖 , 𝑡) − 𝜌𝑆𝑆 (𝑥𝑖 , 𝑦̄𝑖 , 𝑡)
𝑐𝑈 (𝑡) ≡ 𝑈𝑇𝑆 (𝑥𝑖 , 𝑦̄𝑖 , 𝑡) −𝑈𝑆𝑆 (𝑥𝑖 , 𝑦̄𝑖 , 𝑡)
𝑐𝑉 (𝑡) ≡ 𝑉𝑇𝑆 (𝑥𝑖 , 𝑦̄𝑖 , 𝑡) −𝑉𝑆𝑆 (𝑥𝑖 , 𝑦̄𝑖 , 𝑡), 𝑖 = 1, · · · , 𝑁 (16)

where, (𝑥𝑖 , 𝑦̄𝑖), 𝑖 = 1, · · · , 𝑁 represent the locations of the stationary sensors. As shown in Fig 10, the quantities 𝑐𝜌, 𝑐𝑈
and 𝑐𝑉 are computed using simulated models of the single-species and two-species scenarios (with both simulations
being performed from the same initial condition), and these are then used to create the GPR model by determining the
optimal kernel and basis functions for the GP model and then estimating these optimal functions. From this GPR model,
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predictions of the unknown 𝜌𝑀% and 𝑝 can be made as the mobile sensor moves along the trajectory of the maximum
𝜌𝑀% as determined from the wave velocity analysis.

VI. GAUSSIAN PROCESS REGRESSION MODELS
GPR Models are non-parametric kernel-based Bayesian regression and probability distribution models [16] and

have been widely used in regression problems, where the relationship between the input and the output are difficult
to model using a single function. One of the advantages of using these models is that the confidence bounds of the
regressed outputs can be calculated.

A. Training Data and the Gaussian Process Model
Consider a training set D with 𝑛 observations, D = {(x𝑖 , 𝑦𝑖) |𝑖 = 1, ..., 𝑛}, where x𝑖 denotes a 𝑑−dimensional input

vector and 𝑦𝑖 denotes a scalar output or response variable. For this work, x𝑖 refers to 𝑐𝜌 (𝑡), 𝑐𝑈 and 𝑐𝑉 (𝑡) for a particular
sensor location at a particular time and 𝑦𝑖 refers to 𝜌𝑀%, 𝑝. Concatenating all the 𝑛 input vectors, a 𝑑 × 𝑛 input matrix
X and the response variable as a 𝑛 × 1 vector Y, the functional mapping 𝜂(.) links the input set xi to output 𝑦𝑖 . In the
GPR model, 𝜂(x) is modelled in the form [17]:

𝑦(x) = h(x)⊺𝛽︸  ︷︷  ︸
𝑀 (x;𝛽)

+ 𝑓 (x)︸︷︷︸
V(x,x′;𝜎2 , 𝜃 )

. (17)

Here, 𝛽 = (𝛽1, . . . , 𝛽𝑠)⊺ is a s-dimensional vector of the basis function coefficients to be estimated while h(x) represents
the chosen basis function. The term 𝑓 (x) is a GP with zero mean and a kernel function 𝑘 (x, x′; 𝜃). 𝜎2 is defined as the
error variance between the observed and predicted values. The choice of the basis function and the kernel function
play an important role in the accuracy of the GPR model and an optimal choice of kernel and basis functions can
be determined by using a Bayesian optimization method as discussed in [18, 19]. Once the optimal kernel and basis
functions are determined, the following GP prior can be used to represent 𝜂(.)

𝜂(x) |𝛽, 𝜎2, 𝜃 ∼ GP
(
𝑀 (x; 𝛽),V(x, x′

;𝜎2, 𝜃)
)

(18)

where 𝑀 (x; 𝛽) ≡ E[𝜂(x)] denotes the mean function and V(x, x′;𝜎2, 𝜃) ≡ 𝑐𝑜𝑣 [𝜂(x), 𝜂(x′)] denotes the covariance
function V(x, x′;𝜎2, 𝜃) = 𝑘 (x, x′; 𝜃) + 𝜎2𝐼𝑛.

B. GPR Training and Detection of the Malicious Vehicles using GP Posterior
In the GPR training data, the quantities 𝑐𝜌, 𝑐𝑈 , 𝑐𝑉 , at different times, already defined in Section V, represent the

input matrix X and the known values of the traffic parameters 𝜌𝑀%, 𝑝 represent the response variable y. Since the
GPR algorithm mentioned in this paper works only for scalar outputs, therefore two training datasets are constructed,
one with 𝜌𝑀% as the output and other with 𝑝 as the output.

After the optimal basis function ℎ(x) and the kernel function 𝑘 (x, x′; 𝜃) are chosen, then their parameters 𝛽, 𝜃 and
𝜎2, (represented by 𝜗) are determined by maximising the likelihood of 𝑃(𝑃(y|X; 𝜗) using the training data [16]. The
marginal log likelihood of 𝑃(y|X; 𝜗) can be written as

log 𝑃(Y|X; 𝜗) = −1
2
(Y − H𝛽)𝑇K𝜎

−1 (Y − H𝛽)

− 𝑛

2
log 2𝜋 − 1

2
log |K𝜎 |

(19)

where H = (h(x1)⊺, . . . , h(xn)⊺)⊺ are the basis functions of the GP evaluated at the 𝑛 input points and K𝜎 is given by

K𝜎𝑖, 𝑗
= 𝑘 (x𝑖 , x 𝑗 ; 𝜃) + Δ𝑖 𝑗𝜎

2, 𝑖, 𝑗 = 1, . . . , 𝑛

Initially, the algorithm estimates the value of 𝛽 which maximises the log likelihood for a given 𝜃, 𝜎2. This estimate for
𝛽 is given by

𝛽(𝜃, 𝜎2) =
[
H𝑇K𝜎

−1H
]−1 H𝑇K𝜎

−1Y (20)
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Fig. 11 GPR training and test scenario. The blue color represents the equilibrium density of the swarm at
initial time. The yellow color represents the location of the perturbations. The black stars represent the location
of the fixed sensors for GPR training. The red trajectory represents the trajectory of the moving sensor.

Substituting the estimated 𝛽(𝜃, 𝜎2) in the original (19), the 𝛽−profiled log-likelihood is obtained which depends on
𝜃 and 𝜎2 only. Next, the algorithm maximizes the above log-likelihood over the space of 𝜃 and 𝜎2 to obtain their
estimates. This is done using an unconstrained gradient based optimisation solver in Matlab.

After the parameters of the GP model are estimated, they can be used to detect the malicious parameters y∗,
(𝜌𝑀%∗/𝑝∗), for a set of previously undefined time series input x∗ (𝑐∗𝜌, 𝑐∗

𝑈
and 𝑐∗

𝑉
) obtained by comparing the traffic

measurements with the baseline single species model. Using methods given in [20], the posterior GP for prediction of
the response variable , 𝜗̂𝑀𝐿𝐸 is given by:

𝜂(x) |𝜗̂𝑀𝐿𝐸 ,D ∼ GP
(
𝑀∗ (x; 𝛽, 𝜃), 𝑘∗ (x, x′; 𝜃) + 𝜎2𝐼𝑛

)
(21)

where

𝑀∗ (x; 𝛽, 𝜃) = 𝑀 (x∗; 𝛽) + t(x∗)⊺K−1
𝜎 (y − H𝛽) (22)

𝑘∗ (x, x′; 𝜃) = 𝑘 (x∗, x∗′; 𝜃) − t(x∗)⊺K−1
𝜎 t(x∗′)⊺ (23)

t(x∗) = (𝑘 (x∗, x1; 𝜃), . . . , 𝑘 (x∗, x𝑛; 𝜃)) (24)

Here, the mean 𝑀∗ (x; 𝛽, 𝜃) gives the mean predicted values of the response variable and 𝑘∗ (x, x′; 𝜃) computes the
confidence bounds of the mean.

VII. SIMULATION RESULTS
To test the above methodology, a training dataset was initially created and used to train a GPR model. After the

GPR models are created, a test two-species UAV swarm distribution is adopted and measurements are taken by the
sensor moving along the trajectory of the maximum 𝜌𝑀% as predicted by the linearized analysis. The steps are outlined
in the following subsections:

A. Creation of the GPR Training Data
For the baseline case of all vehicles normal, the initial density distribution was chosen as given in Fig 4(a) and the

LWR single-species model (Eq 1) was used to simulate the flow of vehicles for 129.6 s or 2.16 min. Fig 5(a) shows the
density distribution of the vehicles at final time. From the simulation data, measurements of 𝜌, 𝑈, 𝑉 are collected at
discrete time intervals of 10.8 s at six locations: (5, 5), (6, 6.5), (6.25, 7), (7, 7), (7, 6) and (5.5, 7.5) (shown by black
stars in Fig 11) to make up the baseline data. Then, the two-species case was considered as shown in Fig. 4(b) such that
the total density distribution remains the same (𝜌𝑁 + 𝜌𝑀 = 𝜌). The LWR two-species traffic model (Eq 3) was then
used to simulate the flow of vehicles again for 2.16 min (see Fig. 5(b)) and similar measurements of 𝜌, 𝑈 and 𝑉 were
then taken at the same discrete times and at the same locations. These measurements were then compared to obtain 𝑐𝜌,
𝑐𝑈 and 𝑐𝑉 respectively. Fig 12 shows distribution of 𝑐𝜌 at 𝑡 = 129.6 𝑠. The above steps were then repeated three more
times, taking different percentages of malicious vehicles for the two species model. These values of 𝑐𝜌, 𝑐𝑈 and 𝑐𝑉 ,
along with the known values of 𝜌𝑀% and 𝑝 at those locations and times make up the training datasets for 𝜌𝑀% GPR
model and 𝑝 GPR model respectively.
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Fig. 12 Computed 𝑐𝜌 distribution

(b)

Fig. 13 Initial density distributions for the test case
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Fig. 14 Predictions of the Malicious Vehicle parameters

B. GPR Training and Prediction
A GPR model is chosen by initially applying Bayesian Optimization on the dataset to determine it’s kernel and basis

functions. The parameters of the chosen model are then optimised using a Parameter Optimization Algorithm discussed
in Sec VI. After the GPR models are defined, their validity is tested by taking an initial two-species distribution as
shown in Fig 13. Vehicle flow is simulated for 2.16 min and the values of 𝑐𝜌, 𝑐𝑈 and 𝑐𝑉 are computed after comparison
with the baseline case at distinct time intervals of 10.8 s along the computed trajectory of the maximal percentage of 𝜌𝑀
vehicles, as shown in Fig. 11. These values are then used to determine the 𝜌𝑀% and 𝑝 from their GPR models. Fig 14
shows the predicted and true values of 𝜌𝑀% and 𝑝 for each of these locations with the gray shaded region representing
the 95% confidence bounds. In all the cases, the mean predicted values lie close to the true values, and the true values
are contained within the confidence bounds.

VIII. CONCLUSIONS
We consider a class of cyber-attacks where an attacker may potentially hack into the autonomous software of a

subset of vehicles in an UAV swarm flying at a constant altitude. The hacked vehicles, referred to as malicious vehicles,
are assumed to be arbitrarily distributed among the normal vehicles. A 2D LWR two-species PDE model is employed to
model the flow of normal and malicious vehicles in the UAV swarm. A linearized analysis governing the propagation of
small perturbations in malicious and normal vehicle densities is performed in order to find the direction of the wave
along which the maximum 𝜌𝑀% can be detected. This is then combined with a GPR framework to develop a detection
scheme that determines both the fraction of the malicious vehicles, as well as the manner in which they influence the
average velocity of the swarm. Simulations demonstrate the working of the methodology.
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