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I. Introduction
Multivehicle missions have rapidly gained popularity due to their widespread use in a variety of applications, e.g.,

[1–4]. A typical problem in the area of multivehicle cooperative control is formation control, wherein a group of

vehicles form up and move in a specified geometrical shape. Among various formation techniques, leader-follower

formation is of specific interest since the leader’s behavior can directly influence that of the followers [5, 6]. While

maintaining a rigid formation is crucial for applications like target triangulation, and surveillance [7, 8], having a flexible

formation geometry may be of particular importance in area mapping, search and rescue, transportation, etc.

In literature, formation control based on simplified models has been used widely to address leader-follower formation

flying, where the follower agents maintain a fixed relative configuration with respect to the leader [9–12]. In [9], a

leader-follower formation feedback controller based on distance and bearing information of the leader was developed by

considering the planar kinematics model to control the velocity and turning rate of the follower. The proportional-integral

formation controller of [10] had two decoupled autopilots to independently control the heading and the speed of the

follower modeled as a first-order system. In [11], two-dimensional guidance laws were developed for leader-follower

formation flight utilizing the line of sight information. In [12], the formation control laws were derived using system

identification on flight data to maintain the specified geometry.

The virtual structure method is another popular choice for solving the formation flying problem where the vehicles’

trajectories are generated based on virtual formation structure [13–18]. This method provides flexibility in maintaining

formation through the vehicles’ variable relative configuration. In [14], independent heading, altitude, and airspeed

controllers were developed to maintain flexible virtual structure formation using planar kinematics. The design was
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further implemented on a six-degree-of-freedom model of a fixed-wing aircraft. The work in [15] discussed a flexible

formation control that minimizes the impact of rotation structures when the leader changes its heading. In [16], two

independent vertical and horizontal direction controllers were developed where kinetic and potential energy can be

exchanged to meet the desired velocity or altitude requirement. This was achieved by considering a virtual formation

structure based on the aircraft’s velocity or altitude.

Note that most studies, including the aforementioned ones, only considered the follower’s fixed relative configuration

with respect to the leader. There are, however, a few works that have addressed the leader-follower flexible formation

control. Motivated by the formation strategy used by the pilots [19], the authors in [20–22] proposed to achieve a

ring formation around the leader. Instead of maintaining a rigid formation with respect to the leader, the follower can

now converge to a ring around it. Two different strategies were proposed in this regard. The first one presented an

explicit control law that defines a point on the ring and updates it depending on the current position of the follower. The

second one used a potential field method in the context of an aircraft modeled using first-order dynamics. The authors

in [21, 22] designed the follower’s acceleration using nonlinear design techniques considering higher-order aircraft

dynamics for ring formation.

The follower’s energy expenditure is also crucial to consider from a practical standpoint since the amount of fuel

consumption is related to the drag acting on the vehicle [23, 24]. For example, the authors in [16, 25, 26] designed

controllers to quantify and minimize the energy expenditure during flight. These controllers allowed the exchange

between the potential energy and the kinetic energy of the follower aircraft to maintain the desired speed or altitude,

which cannot be controlled independently. The authors in [16] utilized a controller based on energy maneuverability to

analyze the fuel consumption in formation flight. In particular, the controller therein consumed less fuel while using the

vehicle’s thrust as the main input to change its altitude for formation flight. For flexible formation flight, the work in

[27] optimized the thrust consumption of the follower aircraft by making it converge to a specific point on the ring

behind the maneuvering leader. This specific point on the ring was obtained such that the follower’s thrust consumption

was minimized if converging to that point. These studies show that the thrust applied to steer an aircraft is related to its

fuel consumption and serves as an important performance index quantifying the energy usage of the aircraft.

In this paper, we extend the previous studies on ring formation by considering the higher-order dynamic model of

the leader-follower system while aiming to minimize the follower’s energy expenditure. The main contribution of this

paper is to propose a novel energy-efficient flexible leader-follower formation. This choice is motivated by the fact that

introducing flexibility in leader-follower formation could potentially lead to wide-area monitoring, inter-vehicle safety in

a complicated environment, and reduced maneuverability requirements for the follower. For consistency, we also refer to

the proposed leader-follower formation as the follower’s ring formation around the leader, as done in our previous work,

[27]. Most existing works do not consider minimizing the follower’s energy in a formation as it adds to the complexity of

the formation control problem. In the proposed formation, the follower’s position is not rigidly fixed with respect to the
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leader; rather, it is steered to a certain point on the ring. Unlike [27], where the desired point on the ring was obtained as

a solution to the optimization problem, we aim to steer the follower to a specific point on the ring, namely, the minimum

speed point, in order to lower the follower’s energy expenditure. Further, the computation of the minimum energy

point is analytical in the present work. In [27], open-loop energy optimal solutions for the ring formation problem

were obtained utilizing a finite horizon optimizer. However, in the current work, we obtain an energy-efficient feedback

controller using the backstepping technique. Additionally, the proposed approach designates the follower’s thrust, load

factor, and bank angle as its control inputs, unlike existing studies that do not directly manipulate these variables to

control the follower’s position. While we used an optimizer to constrain the control inputs in [27], we account for the

follower’s inherent limits on the available control effort in the design using nonlinear programming. We also show that

it can be steered to the minimum energy point on the ring from various initial configurations relative to the leader.

We adopt the following notations throughout this paper. Lowercase boldfaced letters represent vectors, while

uppercase boldfaced letters denote matrices. The transpose of a vector/matrix is represented by a (·)⊤ and (·)−1 denotes

the inverse of a matrix. The coordinate axes are represented by [𝑋( ·) , 𝑌( ·) , 𝑍 ( ·) ]⊤, where the origin of that frame of

reference is at (·). The maximum and minimum eigenvalue of a matrix are represented using 𝜆max (·) and 𝜆min (·),

respectively. Similarly, R𝑛 and R𝑛×𝑚, respectively, denote the vectors and matrices of appropriate dimensions in real

Euclidean space, where 𝑛, 𝑚 are natural numbers. The Euclidean norm of a vector is denoted by a ∥ · ∥2.

II. Background and Problem Formulation
We consider leader and follower aircraft whose kinematics is given by

¤𝑥𝑘 (𝑡) = 𝑉𝑘 (𝑡) cos 𝛾𝑘 (𝑡) cos 𝜒𝑘 (𝑡), ¤𝑦𝑘 (𝑡) = 𝑉𝑘 (𝑡) cos 𝛾𝑘 (𝑡) sin 𝜒𝑘 (𝑡), ¤𝑧𝑘 (𝑡) = −𝑉𝑘 (𝑡) sin 𝛾𝑘 (𝑡), (1)

where the subscript 𝑘 ∈ {𝑙, 𝑓 } represents either the leader or the follower aircraft. The position of the 𝑘 th aircraft in

the inertial frame is denoted by p𝑘 = [𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘]⊤, such that ¤p𝑘 = [ ¤𝑥𝑘 , ¤𝑦𝑘 , ¤𝑧𝑘]⊤ is its velocity in the same frame. For

[𝑋𝐼 , 𝑌𝐼 , 𝑍𝐼 ]⊤ denoting the inertial frame, 𝑉𝑘 (𝑡), 𝛾𝑘 (𝑡), and 𝜒𝑘 (𝑡) denote the velocity, the flight path angle, and the

heading angle of the respective aircraft, whose dynamics are governed by the following set of equations:

¤𝑉𝑘 (𝑡) =
𝑇𝑘 (𝑡) − 𝐷𝑘 (𝑡)

𝑚𝑘

− 𝑔 sin 𝛾𝑘 (𝑡), ¤𝛾𝑘 (𝑡) =
𝑔

𝑉𝑘 (𝑡)
(𝑛𝑘 (𝑡) cos 𝜙𝑘 (𝑡) − cos 𝛾𝑘 (𝑡)) , ¤𝜒𝑘 (𝑡) =

𝑔

𝑉𝑘 (𝑡)

(
𝑛𝑘 (𝑡) sin 𝜙𝑘 (𝑡)
cos 𝛾𝑘 (𝑡)

)
,

(2)

where 𝑚𝑘 , 𝑇𝑘 (𝑡), 𝑛𝑘 (𝑡), and 𝜙𝑘 (𝑡) denote the mass, the thrust, the load factor, and the bank angle of the 𝑘 th

aircraft, respectively. The drag acting on the 𝑘 th aircraft can be estimated from the drag polar as 𝐷𝑘 (𝑡) =

1
2
𝜌𝑉𝑘 (𝑡)2𝐴𝑘

(
𝐶𝑑0𝑘

(𝑡) + 𝐶𝑑𝑖𝑘
(𝑡)

)
, where 𝐶𝑑0𝑘

is the parasitic drag coefficient, 𝐶𝑑𝑖𝑘
is the induced drag, such that
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𝐶𝑑𝑖𝑘
=
𝐶2
𝑙𝑘
(𝑡)

𝜋𝐴𝑟𝑘𝜂𝑘
, and 𝐶𝑙𝑘 =

2𝑛𝑘𝑚𝑘𝑔

𝜌𝑉𝑘
2𝐴𝑘

is the lift coefficient, which depends on aerodynamic parameters, e.g., aspect ratio

𝐴𝑟𝑘 , wing surface area 𝐴𝑘 , Oswald’s efficiency ratio 𝜂𝑘 , and the acceleration due to gravity 𝑔. Instead of getting into

much detail here, we refer readers to [28] for details on these aerodynamic parameters. It is important to note that the

total specific energy, 𝐸 , and the specific power, 𝑃 for an aircraft, as derived in [29], are given by 𝐸 =
1
2
𝑉2
𝑘
− 𝑔 𝑧𝑘 and

𝑃 =
𝑉𝑘 (𝑇𝑘 − 𝐷𝑘)

𝑚𝑘

. It is evident that the energy expenditure is related to the aircraft speed, thrust, and drag. Hence, it is

expected that minimizing these variables may lead to less energy expenditure.

Unlike most studies, e.g., [30–37], which use the vehicle’s fin deflections, heading, turn rate, or acceleration to

control its position, we propose to directly manipulate its thrust, load factor, and bank angle to control its position since

these variables may be more realistic, and are directly related to vehicle’s energy consideration. Therefore, from (1)–(2),

it is apparent that the dynamics of the aircraft’s position has a relative degree of two with respect to the designated

control inputs– thrust, load factor, and bank angle, such that

¥𝑥𝑘 =

(
𝑇𝑘 − 𝐷𝑘

𝑚

)
cos 𝛾𝑘 cos 𝜒𝑘 − 𝑛𝑘𝑔 (sin 𝛾𝑘 cos 𝜒𝑘 cos 𝜙𝑘 + sin 𝜒𝑘 sin 𝜙𝑘)

¥𝑦𝑘 =

(
𝑇𝑘 − 𝐷𝑘

𝑚

)
cos 𝛾𝑘 sin 𝜒𝑘 − 𝑛𝑘𝑔 (sin 𝛾𝑘 sin 𝜒𝑘 cos 𝜙𝑘 − cos 𝜒𝑘 sin 𝜙𝑘)

¥𝑧𝑘 = −
(
𝑇𝑘 − 𝐷𝑘

𝑚

)
sin 𝛾𝑘 − 𝑛𝑘𝑔 (cos 𝛾𝑘 cos 𝜙𝑘) + 𝑔,

(3)

where we have now dropped the arguments of the variables for brevity, and considered 𝑚𝑘 = 𝑚, since we assume

that the leader and the follower aircraft are homogeneous. Alternately, we can represent (3) compactly as ¥p𝑘 (𝑡) =

[ ¥𝑥𝑘 (𝑡), ¥𝑦𝑘 (𝑡), ¥𝑧𝑘 (𝑡)]⊤ to denote the acceleration of the 𝑘 th aircraft in the inertial frame.

This paper also considers the limits on the vehicles’ available control efforts since their thrust, load factor, and bank

angle are constrained and bounded in practice. To this aim, we consider a mathematically convenient second-order

dynamics with constrained inputs, using (1)–(2), ¥p𝑘 = B𝑘 (𝑡) sat(ũ𝑘 (𝑡)) + g, where

B𝑘 (𝑡) =



cos 𝛾𝑘 cos 𝜒𝑘 − sin 𝛾𝑘 cos 𝜒𝑘 − sin 𝜒𝑘

cos 𝛾𝑘 sin 𝜒𝑘 − sin 𝛾𝑘 sin 𝜒𝑘 cos 𝜒𝑘

− sin 𝛾𝑘 − cos 𝛾𝑘 0


, g =



0

0

𝑔


, ũ𝑘 (𝑡) =



𝑇𝑘 − 𝐷𝑘

𝑚

𝑛𝑘 cos 𝜙𝑘

𝑛𝑘 sin 𝜙𝑘


, (4)

with 𝑇𝑘 , 𝑛𝑘 and 𝜙𝑘 being the actual control inputs. Since B𝑘 is of full rank, there is no loss of controllability. The

control inputs in our design are constrained within their physical limits using a nonlinear programming routine and is

denoted by a saturation function. In this paper, we consider the problem of controlling the position of the follower

aircraft in a flexible formation. While the leader is free to make independent maneuvers, the follower needs to converge

to a virtual ring around the leader. We call it the follower’s ring formation maneuver for simplicity. This virtual ring
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around the leader represents an infinite set of desired trajectories for the follower to converge on, thus eliminating the

need for the leader-follower system to maintain a rigid formation. The follower can now choose to converge to any point

on the ring, which may not be possible in rigid formations. However, our objective here is to steer the follower to a

specific point on the ring that corresponds to minimum energy expenditure, using practical control inputs (thrust, load

factor, and bank angle), thereby making the leader-follower formation energy-efficient and implementable in practice.

III. Energy-efficient Leader-follower Ring Formation
In this section, we first derive the specific point on the ring that corresponds to the follower’s minimum energy

expenditure, followed by the suitable control inputs to steer it to that point on the ring from arbitrary initial positions.

Fig. 1 depicts the leader-follower aircraft system where a red-colored virtual ring is attached to the leader aircraft. Their

body-fixed frames are [𝑋𝑙𝐵 , 𝑌𝑙𝐵 , 𝑍𝑙𝐵 ]⊤ and [𝑋 𝑓𝐵 , 𝑌 𝑓𝐵 , 𝑍 𝑓𝐵 ]⊤, whereas the frame [𝑋𝑟𝐵 , 𝑌𝑟𝐵 , 𝑍𝑟𝐵 ]⊤ represents the body

frame of center of the ring. The frames attached to the leader and center of the ring are always parallel, separated by an

offset along the body X-axis as the ring is rigidly attached. For our convenience, we have chosen the body-fixed and

inertial coordinate frames with a downward-facing Z-axis. The X and Y-axes are chosen accordingly to complete the

right-handed coordinate system. Note that the thrust required to maintain a steady flight is related to the follower’s

Fig. 1 The leader-follower ring formation geometry.

(a) Isometric view of the ring. (b) Back/planar view of the ring.

Fig. 2 Virtual ring behind the leader.

energy expenditure since the thrust and the drag are balanced in the steady state. Thus, lower thrust will require less

drag to balance it, resulting in less energy consumption.

5



A. Minimum Energy Point on the Virtual Ring

Consider a virtual ring located behind the leader at a certain distance, as shown in Fig. 2. The ring, whose radius is

𝑅, is centered at (C𝑥 , C𝑦 , C𝑧), as seen in the leader’s body frame. Since the ring is located directly behind the leader and

separated by an offset of C𝑥 , it is clear that C𝑦 = C𝑧 = 0 since their body frames are parallel to each other. We further

assume that 𝑅 and C𝑥 remain invariant throughout the formation.

Let us now consider a point on the ring, P, such that the ring angle, 𝜑, is the angle subtended by the line joining P

and the 𝑦−axis in the leader’s frame, measured counterclockwise, by assuming that the leader’s heading is aligned with

its body 𝑥-axis. Note that the ring’s frame is rigidly attached to the leader’s body frame. Hence, the velocity experienced

at any point in the ring, VP , is the sum of the leader’s velocity, V𝑙 , and an additional term that depends on the leader’s

angular velocity,𝜔𝜔𝜔𝑙 , and the offset from its center of mass, rP , given by

VP = V𝑙 +𝜔𝜔𝜔𝑙 × rP =



𝑉𝑙 + ¤𝛾𝑙 (𝐶𝑧 + 𝑅 sin 𝜑) − ¤𝜒𝑙 (𝐶𝑦 + 𝑅 cos 𝜑)

𝑅 ¤𝜒𝑙

−𝑅 ¤𝛾𝑙


;V𝑙 = [𝑉𝑙 , 0, 0]⊤,𝜔𝜔𝜔𝑙 = [0, ¤𝛾𝑙 , ¤𝜒𝑙]⊤ (5)

and rP =
[
𝐶𝑥 , 𝐶𝑦 + 𝑅 cos 𝜑, 𝐶𝑧 + 𝑅 sin 𝜑

]⊤. We can now use rotation matrices to obtain the position of any point on the
ring in the inertial frame, pP , as pP = p𝑙+R(𝛾𝑙 , 𝜒𝑙)rP , whereR(𝛾𝑙 , 𝜒𝑙) =



cos 𝜒𝑙 − sin 𝜒𝑙 0

sin 𝜒𝑙 cos 𝜒𝑙 0

0 0 1





cos 𝛾𝑙 0 sin 𝛾𝑙

0 1 0

− sin 𝛾𝑙 0 cos 𝛾𝑙


denotes the composite rotation matrix that transforms a vector from the leader’s body frame to the inertial frame.

In general, the follower can converge to any point, P, on the ring, thereby making it critical to determine which

point to stay at with respect to the leader’s specific position and heading at a particular time. We consider steering the

follower on a specific point on the ring, P★, such that its speed is minimum since moving slowly essentially means

applying small acceleration, which requires less thrust. For example, when the leader moves in a straight line, all points

on the ring have the same velocity, equal to that of the leader. Consequently, convergence to any point on the ring will

require equal thrust. However, when the leader performs a different maneuver from a straight line, the points on the ring

have different velocities depending on the leader’s angular velocity. Since the point with less speed means less thrust, it

is important to provide an analytic study of the point with minimum speed.

Lemma 1. A point on the ring, P★, has minimum speed if it subtends a ring angle,

𝜑★ = tan−1
(
− ¤𝛾𝑙
¤𝜒𝑙

)
; ¤𝛾𝑙 ≠ 0, ¤𝜒𝑙 ≠ 0, (6)

6



with respect to the 𝑌−axis in the leader’s body frame.

Proof. Since minimizing the velocity, namely, the magnitude of VP , is equivalent to minimizing
1
2

V⊤
PVP , we begin by

differentiating VP with respect to 𝜑 and set it equal to zero, that is,

1
2
𝜕

𝜕𝜑

(
V⊤

PVP
)
= 0 =⇒ V⊤

P
𝜕VP
𝜕𝜑

= 0, (7)

which can be further simplified, using, (5), as

[
𝑉𝑙 + ¤𝛾𝑙 (𝐶𝑧 + 𝑅 sin 𝜑) − ¤𝜒𝑙 (𝐶𝑦 + 𝑅 cos 𝜑) 𝐶𝑥 ¤𝜒𝑙 −𝐶𝑥 ¤𝛾𝑙

]⊤ 

𝑅 ¤𝛾𝑙 cos 𝜑 + 𝑅 ¤𝜒𝑙 sin 𝜑

0

0


= 0. (8)

Equivalentally, from (8), one has
(
𝑉𝑙 + ¤𝛾𝑙 (𝐶𝑧 + 𝑅 sin 𝜑) − ¤𝜒𝑙 (𝐶𝑦 + 𝑅 cos 𝜑)

)
(𝑅 ¤𝛾𝑙 cos 𝜑 + 𝑅 ¤𝜒𝑙 sin 𝜑) = 0 whose two

solutions are 𝜑 = tan−1
(
− ¤𝛾𝑙
¤𝜒𝑙

)
, and 𝜑 = tan−1

(
¤𝛾𝑙

− ¤𝜒𝑙

)
. Evaluating

1
2
𝜕2

𝜕𝜑2

(
V⊤

PVP
)
at (6) results in

1
2
𝜕2

𝜕𝜑2
(
V⊤

PVP
) ���

𝜑=𝜑∗
= (𝑅 ¤𝛾𝑙 cos 𝜑 + 𝑅 ¤𝜒𝑙 sin 𝜑)2 + (𝑉𝑙 + 𝑅 ¤𝛾𝑙 sin 𝜑 − 𝑅 ¤𝜒𝑙 cos 𝜑) (−𝑅 ¤𝛾𝑙 sin 𝜑 + 𝑅 ¤𝜒 cos 𝜑)

���
𝜑=𝜑∗

=

(
𝑉𝑙 − 𝑅

√︃
¤𝛾2
𝑙
+ ¤𝜒2

𝑙

) (
𝑅

√︃
¤𝛾2
𝑙
+ ¤𝜒2

𝑙

)
. (9)

From (9), it is apparent that
1
2
𝜕2

𝜕𝜑2

(
V⊤

PVP
) ���

𝜑=𝜑∗
> 0 since the leader’s speed cannot be negative. Thus, it readily

follows that (6) corresponds to the minimum.

Recall that the follower needs to converge to 𝜑★ irrespective of the leader’s maneuver. However, if the leader

moves in a straight line, then one may observe from Lemma 1 that ¤𝛾𝑙 = ¤𝜒𝑙 = 0. This particular scenario may lead to

inconsistencies in the definition of 𝜑★ in (6), whose investigation is our next objective.

If the leader moves in a straight line, then VP = V𝑙 = [𝑉𝑙 , 0, 0]⊤. This essentially means that any P can correspond

to the point of minimum energy. Thus, the follower may choose to converge to the nearest point on the ring, say P𝑛,

given by

𝜑 = tan−1
(
𝐶𝑧 − e⊤3R⊤ (𝛾𝑙 , 𝜒𝑙)p 𝑓

𝐶𝑦 − e⊤2R⊤ (𝛾𝑙 , 𝜒𝑙)p 𝑓

)
, (10)

where e2, e3 are the standard bases in R3. This computation of (10) in our paper is also consistent with the one in [38].

Since the follower’s nearest point on the ring may change, it may show a tendency to abruptly jump to another P than

the one it was initially aiming at. To prevent a sudden jump in the follower’s trajectory and control inputs, the rate of

change of the ring angle can be regulated via some desired dynamics. For example, letting ¤𝜑★ − ¤𝜑 = −𝜅 (𝜑★ − 𝜑) for

7



some 𝜅 > 0 would allow the follower a smooth transition among nearest points at different instants of time.

B. The Follower’s Control Law

Having computed the specific point at which the follower needs to converge, we now present the proposed control

law in this subsection. Consider the error between the position of the follower aircraft and the point of minimum energy

on the ring in inertial frame,

e = p 𝑓 − pP★ = p 𝑓 − p𝑙 − R(𝛾𝑙 , 𝜒𝑙)rP★ , (11)

where pP★ and rP★ are the same as in pP and rP defined previously, except that a ★ indicates that they corresponds to

P★. Since the system under consideration has a relative degree of two, time differentiating (11) twice yields

¥e = ¥p 𝑓 − ¥p𝑙 −
𝑑2

𝑑𝑡2
(R(𝛾𝑙 , 𝜒𝑙)rP★) , (12)

which can be written as a second-order nonlinear system with a bounded uncertainty, that is,

¥e = B 𝑓 sat(ũ 𝑓 ) + g + d; d = −¥p𝑙 −
𝑑2

𝑑𝑡2
(R(𝛾𝑙 , 𝜙𝑙)rP★) . (13)

Remark 1. The term d represents the second derivative of the position of the minimum speed point in the inertial frame.

The position of the minimum speed point can be obtained using a combination of sensors mounted on the follower as

well as being aided by a ground station, which can communicate some of the leader’s information (e.g., its heading

angles and turn rates) to the follower. We treat d as an uncertainty since evaluating its analytical expression may be

cumbersome, and higher-order derivatives of P∗ may not be available for measurement directly. Instead, we resort to

using command filters [39] to obtain an estimate of d, say d̂, which may be favorable in such scenarios. Also, this helps

us to simplify the equation 12 by grouping together the terms not directly computable by the follower under a single

uncertain variable d.

For convenience, let us write (13) as

¤z1 = z2 (14a)

¤z2 = B 𝑓 sat(ũ 𝑓 ) + g + d̂, (14b)

where d̂ is an approximation of −¥p𝑙 −
𝑑2

𝑑𝑡2
(R(𝛾𝑙 , 𝜒𝑙)rP★). In (14), we denote e and ¤e by z1 and z2, respectively. Our

goal here is to stabilize z1 and z2 to the origin with suitable control input, ũ 𝑓 , respecting the saturation constraints which,

in essence, is equivalent to designing the follower’s necessary thrust, load factor, and bank angle. At this stage, we recall

8



that the actual control input, u 𝑓 = [𝑇 𝑓 , 𝑛 𝑓 , 𝜙 𝑓 ]⊤, is related to ũ 𝑓 as

𝑢 𝑓1 = 𝑇 𝑓 = 𝑚𝑢̃ 𝑓1 + 𝐷 𝑓 , (15a)

𝑢 𝑓2 = 𝑛 𝑓 =

√︃
𝑢̃2
𝑓2
+ 𝑢̃2

𝑓2
, (15b)

𝑢 𝑓3 = 𝜙 𝑓 = tan−1
𝑢̃ 𝑓3

𝑢̃ 𝑓2

. (15c)

Theorem 1. Consider the error dynamics (13) and the auxiliary nonlinear system, (14). If the control input for the

system (14) is designed as

ũ 𝑓 = −B−1
𝑓

(
−N𝜁𝜁𝜁 − g − d̂ − Kz2 + M 𝜉𝜉𝜉 − z1

)
, (16)

where 𝜉𝜉𝜉 is obtained via

¤𝜉𝜉𝜉 = −M 𝜉𝜉𝜉 + B 𝑓

(
ũ 𝑓 − sat(ũ 𝑓 )

)
(17)

and is related to 𝜁𝜁𝜁 through

𝜁𝜁𝜁 = z2 + Kz1 + 𝜉𝜉𝜉, (18)

such that K,M,N are diagonal matrices of appropriate dimensions having positive entries, then the trajectories of (14)

remain uniformly bounded within a compact set,

Ω =

(z1, 𝜁𝜁𝜁) : ∥z1∥2 ≤
∥𝜉𝜉𝜉∥2

𝜆max (𝐾)
, ∥𝜁𝜁𝜁 ∥2 ≤




(d − d̂
)



2

𝜆max (𝑁)

 , (19)

with an ultimate performance bound,

∥z1∥2 ≤ max
(z1, 𝜁𝜁𝜁) ∈ Ω

√︄(
𝜉𝜉𝜉

𝜆max (𝐾)

)2
+
(

d − d̂
𝜆max (𝑁)

)2
. (20)

Proof. Consider a Lyapunov function candidate,𝑊1 (z1) =
1
2

z⊤1 z1, whose time differentiation results in ¤𝑊1 (z1) = z⊤1 z2.

If we let z2 = −Kz1, then the origin of the system, ¤z1 = −Kz1, is asymptotically stable. We now use the backstepping

technique to account for saturation constraints on the control input. To this aim, we consider an intermediate relationship,

(18), such that 𝜉𝜉𝜉 compensates the effects of input saturation, and whose dynamics is given as (17).

One may observe from (17) that if ũ 𝑓 , and hence the follower’s control law, respects the saturation constraints, then

𝜉𝜉𝜉 decays to zero asymptotically since ũ 𝑓 − sat(ũ 𝑓 ) is ideally zero in that scenario.

Nowwe consider another Lyapunov function candidate,𝑊2 (z1, 𝜁𝜁𝜁) = 𝑊1 (z1)+
1
2
𝜁𝜁𝜁⊤𝜁𝜁𝜁 =

1
2

z⊤1 z1+
1
2
𝜁𝜁𝜁⊤𝜁𝜁𝜁 . Differentiating
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𝑊2 (z1, 𝜁𝜁𝜁) with respect to time, and using (18) and (17), yields

¤𝑊2 (z1, 𝜁𝜁𝜁) = z⊤1 (𝜁𝜁𝜁 − Kz1 − 𝜉𝜉𝜉) + 𝜁𝜁𝜁⊤ ¤𝜁𝜁𝜁 = −z⊤1 (𝜁𝜁𝜁 − Kz1 − 𝜉𝜉𝜉) + 𝜁𝜁𝜁⊤
[
¤z2 + Kz2 − M 𝜉𝜉𝜉 + B 𝑓

(
ũ 𝑓 − sat(ũ 𝑓 )

) ]
. (21)

Simplifying (21) further, using (14), results in

¤𝑊2 (z1, 𝜁𝜁𝜁) = − z⊤1 (𝜁𝜁𝜁 − Kz1 − 𝜉𝜉𝜉) + 𝜁𝜁𝜁⊤
[
B 𝑓 sat(ũ 𝑓 ) + g + d + Kz2 − M 𝜉𝜉𝜉 + B 𝑓

(
ũ 𝑓 − sat(ũ 𝑓 )

) ]
= − z⊤1 𝐾z1 + z⊤1 (𝜁𝜁𝜁 − 𝜉𝜉𝜉) + 𝜁𝜁𝜁

⊤ [
B 𝑓 ũ 𝑓 + g + d + Kz2 − M 𝜉𝜉𝜉

]
= − z⊤1 𝐾z1 − z⊤1 𝜉𝜉𝜉 + 𝜁𝜁𝜁

⊤ [
B 𝑓 ũ 𝑓 + g + d + Kz2 − M 𝜉𝜉𝜉 + z1

]
. (22)

If we choose ũ 𝑓 as the one given in (16), then (22) reduces to

¤𝑊2 (z1, 𝜁𝜁𝜁) = − z⊤1 𝐾z1 − z⊤1 𝜉𝜉𝜉 − 𝜁𝜁𝜁
⊤N𝜁𝜁𝜁 + 𝜁𝜁𝜁⊤

(
d − d̂

)
. (23)

To ensure ¤𝑊2 < 0, we need to show that −z⊤1 𝐾z1 − 𝜁𝜁𝜁⊤N𝜁𝜁𝜁 in (23) dominates the rest of the terms. Thus, we rewrite (23)

using Rayleigh inequality as

¤𝑊2 (z1, 𝜁𝜁𝜁) ≤ − 𝜆max (𝐾) ∥z1∥22 − 𝜆max (𝑁) ∥𝜁𝜁𝜁 ∥
2
2 − ∥z1∥2 ∥𝜉𝜉𝜉∥2 + ∥𝜁𝜁𝜁 ∥2




(d − d̂
)



2

≤ − ∥z1∥2 (𝜆max (𝐾) ∥z1∥2 − ∥𝜉𝜉𝜉∥2) − ∥𝜁𝜁𝜁 ∥2
(
𝜆max (𝑁) ∥𝜁𝜁𝜁 ∥2 −




(d − d̂
)



2

)
. (24)

It readily follows from (24) that the decrement of𝑊2 is guaranteed outside the compact set, Ω as given in (19), that is

¤𝑊2 (z1, 𝜁𝜁𝜁) ≤ −𝜆max (𝐾) ∥z1∥22 − 𝜆max (𝑁) ∥𝜁𝜁𝜁 ∥
2
2 < 0; ∀ z1, 𝜁𝜁𝜁 ≠ 0. (25)

Clearly, the system trajectories of (14) converge to Ω asymptotically and remain uniformly bounded within it. Within Ω,

the ultimate performance bound can be obtained by evaluating the maximum of𝑊2 within Ω, such that

𝑊1 (z1) < 𝑊2 (z1, 𝜁𝜁𝜁) < max
(z1 ,𝜁𝜁𝜁 ) ∈Ω

𝑊2 (z1, 𝜁𝜁𝜁) = max
(z1 ,𝜁𝜁𝜁 ) ∈Ω

[
1
2

(
𝜉𝜉𝜉

𝜆max (𝐾)

)2
+ 1
2

(
d − d̂
𝜆max (𝑁)

)2]
. (26)

From (26), it is apparent that the ultimate performance bound is indeed given by (20). This concludes the proof.

Remark 2. One may notice from (26) that 𝜉𝜉𝜉 and d̂ are critical in deciding the ultimate performance bound on the system

trajectories of (14). To further elucidate this, consider a scenario where the follower’s control law respects the saturation

constraints, and the information about d is perfect; that is, both ũ 𝑓 − sat(ũ 𝑓 ) and d − d̂ are zero. Consequently, 𝜉𝜉𝜉 → 0

asymptotically whose rate of convergence can be dictated by choosing a suitable M, which in turn, would lead to
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asymptotic convergence of z1, z2, and 𝜁𝜁𝜁 .

It is also worth mentioning that if 𝜉𝜉𝜉 does not vanish, then the said leader-follower ring formation may not be

guaranteed. For example, when the follower is initially located too far from the leader/ring such that e is large, its control

efforts may become saturated. If this saturation persists indefinitely, then 𝜉𝜉𝜉 does not vanish, thereby leading to failure of

the desired ring formation. However, in most cases, it is reasonable to assume that the follower’s control efforts are not

saturated, at least after a finite time. Thus ring formation may be achieved since 𝜉𝜉𝜉 will eventually decrease to zero. In

the interest of proposing a new flexible formation scheme, we assume that the leader-follower engagement does not lead

to the follower’s control inputs saturating indefinitely. We leave an in-depth investigation of feasible geometries for ring

formation for our future work.

C. Effects of Saturation on the Follower’s Control Efforts

In the previous subsection, we designed ũ 𝑓 to stabilize (14). Since ũ 𝑓 and the follower’s actual control effort, u 𝑓 , are

related through (15), we finally consider the input saturation constraints to design u 𝑓 . Note that the mapping between

u 𝑓 and ũ 𝑓 is nonlinear. Further, steering the follower using thrust, load factor, and bank angle while considering

saturation constraints requires solving an energy minimization procedure which may involve evaluating nonlinear

objective functions or nonlinear constraints. To provide an appropriate representation of the follower’s control inputs

considering saturation constraints for the proposed ring formation scenario, we propose to use nonlinear programming

instead of directly saturating thrust, load factor, and bank angle. Specifically, we minimize the difference between the

available and the demanded control efforts. The nonlinear programming routine used in our paper takes the load factor

and the bank angle as inputs and provides their suitable values as outputs to constrain them within their desired physical

limits. In order to perform the necessary computations, the routine iterates several times until the desired values at the

output are achieved.

Consider the following minimization procedure where we obtain the load factor and the bank angle within their

permissible limits, given by

(
𝑛★𝑓 , 𝜙

★
𝑓

)
= argmin

𝑛 𝑓min ≤𝑛 𝑓 ≤𝑛 𝑓max
𝜙 𝑓min ≤𝜙 𝑓 ≤𝜙 𝑓max

(
sat(𝑢̃ 𝑓2 ) − 𝑢̃ 𝑓2

)2 + (
sat(𝑢̃ 𝑓3 ) − 𝑢̃ 𝑓3

)2
= argmin

𝑛 𝑓min ≤𝑛 𝑓 ≤𝑛 𝑓max
𝜙 𝑓min ≤𝜙 𝑓 ≤𝜙 𝑓max

(
sat(𝑢̃ 𝑓2 ) − 𝑛 𝑓 cos 𝜙 𝑓

)2 + (
sat(𝑢̃ 𝑓3 ) − 𝑛 𝑓 sin 𝜙 𝑓

)2
. (27)

In (27), we do not include the 𝑢̃ 𝑓1 mainly because it contains terms representing the follower’s thrust and drag, whose

minimum values together with 𝑛★
𝑓
, 𝜙★

𝑓
, may not represent their actual physical values. Instead, once the load factor and the

bank angle are obtained, the required value of thrust can be evaluated using (15), (27) and an indicator variableI, such that
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I = 𝑚𝑢̃ 𝑓1+𝐷 𝑓 (𝑛★𝑓 ). Depending onI, we have𝑇
★
𝑓
=


max (𝑇min,min (𝑇max,I)) if I ≥ 0,

max
(
0,min

(
1,− I

𝐷B

))
; 𝐷B =

1
2
𝜌𝑆 𝑓𝑉

2
𝑓
𝐶𝑑B if I < 0.

. Since

the thrust is non-negative in practice, we introduce an airbrake, B, which is represented as B = max
(
0,min

(
1,− I

𝐷B

))
,

where 𝐶𝑑B is the airbrake coefficient which helps reverse the thrust value when I becomes negative.

IV. Simulations
This section validates the proposed results on Cessna 172 Skyhawk [40], which is a fixed-wing aircraft. We

demonstrate the efficacy of the proposed control law in achieving ring formation around the leader, which makes

independent loiter and straight-line maneuvers. The leader, whose initial position is [0,−635,−1000]⊤ m in the inertial

frame, moves with an initial speed of 60 m/s with zero initial flight path and bank angles. We consider the radius of

the ring as 30 m whose center in the leader’s body frame is [30, 0, 0]⊤ m. Other parameters used in simulation are

presented in Table 1. Initially, 𝜙 = 0◦ and 𝑛 = 1 are used as the guess for the nonlinear programming routine.

Table 1 Simulation parameters.

Parameter Value Unit Parameter Value Unit

𝑚𝑘 1111 kg [𝐾11, 𝐾22, 𝐾33] 0.1 -
𝜌𝑘 1.225 kg/m3 [𝑀11, 𝑀22, 𝑀33] 0.1 -
𝑔 9.81 m/s2 [𝑁11, 𝑁22, 𝑁33] 20 -
𝐴𝑟𝑘 7.32 - 𝜅 0.1 -
𝐴𝑘 16.2 m2 𝑇 𝑓 [0, 2000] N
𝜂𝑘 0.85 - B (0, 1) -
𝐶𝑑0𝑘

0.01 - 𝑛 𝑓 [0, 2] -
𝐶𝑑B 0.02 - 𝜙 𝑓

[
−𝜋
3
,
𝜋

3

]
rad

Fig. 3 depicts the follower achieving and maintaining ring formation behind the leader when the latter executes

loiter maneuver. The follower’s initial speed and heading are the same as that of the leader whereas its initial position in

inertial frame is [−100,−735,−1100]⊤ m. Since the leader is in steady loiter maneuver, its control inputs are constant,

that is, u𝑙 = [584.04N, 1.1547, 30◦]⊤.

The trajectories of the leader and the follower are shown in Fig. 3a, where we can observe that the follower is able to

converge to the ring and maintains ring formation for all future times. For a loiter maneuver, the linear speed is inversely

proportional to the loiter radius, therefore less thrust is required by an aircraft for a smaller loiter radius. It can be

seen Fig. 3a that the radius of the follower’s loiter circle is smaller that that of the leader. Therefore, the follower will

consume less thrust to maintain formation in steady state. We have also demonstrated a scenario wherein the follower

converges to the nearest point on the ring. Note that converging to the nearest point on the ring does not necessary lead
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(a) Trajectories.
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(e) Convergence of 𝜁𝜁𝜁 and 𝜉𝜉𝜉.

Fig. 3 The follower’s ring formation when the leader executes loiter maneuver.
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Fig. 4 The follower’s ring formation when the leader executes straight-line maneuver.
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to an energy-efficient formation unless the leader is moving in a straight-line. The variation of the follower’s control

inputs are depicted in Figs. 3b–3c. Thrust and airbrake are responsible for controlling the follower’s forward motion.

Notice that the airbrake input, shown in Fig. 3b, activates only when the thrust demand is non-positive. Without a

mechanism to provide negative thrust, the follower’s controller will overshoot. The load factor and the bank angle,

shown in Fig. 3c, also remain within their permissible limits during the entire formation maneuver.

The profiles of various error variables are also shown in Figs. 3d–3e, which evidence that after a short transient

phase, the errors asymptotically tend to zero under the action of the follower’s control inputs. Owing to the control affine

treatment of the second-order error dynamics, the errors exhibit slow oscillatory behavior initially before asymptotically

decaying to zero. During this time, the control efforts reduce in magnitude before settling down at a fixed value.

A similar discussion follows for the case when the leader moves in a straight line. Keeping the initial conditions

same as before, Fig. 4 illustrates the follower’s ring formation maneuver when the leader moves in a straight line. Since

the leader is moving in straight line, its control inputs are constant, that is, u𝑙 = [527.33N, 1.0, 0◦]⊤. In this case,

the follower’s nearest point on the ring, P𝑛, is the point that corresponds to minimum energy. As the error variables

converge, the follower’s control effort also reduce, eventually keeping the follower on the ring. The necessary error

variables and the control effort follow a similar trend as those in the previous case of the leader’s loiter maneuver.

(a) The leader moves in a loiter circle. (b) The leader moves in a straight line.

Fig. 5 The follower’s trajectories for various initial conditions.

We also demonstrate the follower’s trajectories under various initial conditions when the leader executes loiter

and straight-line maneuvers. These different initial positions of the follower are denoted as 𝐹1 through 𝐹2 such

that 𝐹1 = [−100;−735;−1100]⊤ m, 𝐹2 = [−100;−535;−1100]⊤ m, 𝐹3 = [−100;−535;−900]⊤ m, and 𝐹4 =

[−100;−735;−900]⊤ m. The leader’s initial conditions and control inputs remain the same as before depending on the

maneuver it executes. Fig. 5a shows that the follower, starting at different initial positions, converges to the same point

on the ring which is the minimum energy point when the leader executes loiter maneuver. When the leader is moving in

a straight line, the follower converges to different points on the ring nearest to its initial position as seen in Fig. 5b.

Fig. 6a shows the ring angles corresponding to the P★ in the leader’s frame, and the follower’s nearest point on the

ring. It is observed that the instantaneous value of the ring angle, as seen by the follower, eventually tracks the actual
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(a) Ring angle comparison when leader
in loiter.
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(c) Leader moves in straight line.

Fig. 6 Ring angles for various initial conditions.

value of 𝜑★ after the necessary error variables have converged (when the leader is in loiter). However, the follower

converges to the same ring angle with respect to the leader in the case of the leader’s loiter maneuver, as seen in Fig. 6b.

For the straight-line maneuver, all the points on the ring experience the same velocity, thus the follower converges to the

nearest point on the ring depending on its initial position (see Fig. 6c).
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(a) Energy expenditure corresponding to P★ and P𝑛. (b) Normalized energy expenditure.

Fig. 7 The follower’s energy expenditure for the leader’s loiter maneuver.

A comparison of overall control effort, computed using
∫ 𝑡

0
u⊤u 𝑑𝑡, is also depicted in Fig. 7 where we have

normalized the follower’s control effort (when it converges to P★) with respect to that corresponding to any other point

on the ring (for example, P𝑛). Clearly, the proposed control law demands less energy in the steady-state. The initial

increase in control effort may be attributed to the fact that the follower is trying to reach P★, so it has to take necessary

maneuvers before its energy requirements could be reduced. For a typical loiter maneuver of the leader, it can be

observed that the follower demands 8% less energy to converge to the ring if it is steered on P★ as compared to the

nearest point on the ring.

We now show the Monte Carlo simulations to attest to the merits of the proposed technique. From Fig. 8a, it is
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(b) Time required for saturation depletion.

Fig. 8 Monte Carlo simulations related to the convergence of nonlinear programming routine.

evident that for an experiment repeated around 1200 times with arbitrary initial conditions, the nonlinear programming

routine converges within 60 steps. On the other hand, it can be observed from Fig. 8b that it takes around 4-5 seconds

for the saturated values of the corresponding variables to vanish. Thereafter, the routine may not be needed since the

load factor, and the bank angle never hit the saturation limits.

V. Conclusions and Future Work
This paper presented an energy-efficient flexible formation scheme for a leader-follower aircraft system, namely ring

formation. Such a formation is a set of desired points around the leader where the follower might choose to converge

and stay at regardless of the leader’s maneuvers. The proposed method accounted for aerodynamic parameter variation

through suitable control inputs, which were constrained in the design due to their physical limitations. The follower was

steered to a specific point on the ring, using thrust, load factor, and bank angle, which corresponds to the minimum

energy expenditure. The proposed design was based on the backstepping technique, where we proved the ultimate

boundedness of the system trajectories when the effects of control input saturation were accounted for. Owing to the

nonlinear constraints in the saturated control design, we used nonlinear programming to obtain the follower’s actual

control inputs. From a comparison of the follower’s normalized energy expenditure in various scenarios, it was inferred

that the follower demands lesser energy when it converges to the point that corresponds to the minimum speed point.

However, it expended more energy even if it had to converge to the nearest point on the ring. The current results may be

extended to account for the time-varying radius of the ring or even to a more generalized shape behind the leader (e.g.,

an ellipse or a sphere). Further, casting the same problem as an energy minimization one to steer the follower on the

ring may offer a different perspective to look at the same problem in the future. Incorporating multiple followers within

an energy-efficient formation framework could be another interesting direction to pursue in the future.
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